5,183 research outputs found

    Stimulated plasmon polariton scattering

    Full text link
    The plasmon and phonon polaritons of two-dimensional (2d) and van-der-Waals materials have recently gained substantial interest. Unfortunately, they are notoriously hard to observe in linear response because of their strong confinement, low frequency and longitudinal mode symmetry. Here, we propose a fundamentally new approach of harnessing nonlinear resonant scattering that we call stimulated plasmon polariton scattering (SPPS) in analogy to the opto-acoustic stimulated Brillouin scattering (SBS). We show that SPS allows to excite, amplify and detect 2d plasmon and phonon polaritons all across the THz-range while requiring only optical components in the near-IR or visible range. We present a coupled-mode theory framework for SPS and based on this find that SPS power gains exceed the very top gains observed in on-chip SBS by at least an order of magnitude. This opens exciting new possibilities to fundamental studies of 2d materials and will help closing the THz gap in spectrocopy and information technology.Comment: 7 pages, 3 figure

    Plasmonics for emerging quantum technologies

    Get PDF
    Expanding the frontiers of information processing technologies and, in particular, computing with ever increasing speed and capacity has long been recognized an important societal challenge, calling for the development of the next generation of quantum technologies. With its potential to exponentially increase computing power, quantum computing opens up possibilities to carry out calculations that ordinary computers could not finish in the lifetime of the Universe, while optical communications based on quantum cryptography become completely secure. At the same time, the emergence of Big Data and the ever increasing demands of miniaturization and energy saving technologies bring about additional fundamental problems and technological challenges to be addressed in scientific disciplines dealing with light-matter interactions. In this context, quantum plasmonics represents one of the most promising and fundamental research directions and, indeed, the only one that enables ultimate miniaturization of photonic components for quantum optics when being taken to extreme limits in light-matter interactions.Comment: To appear in Nanophotonic

    How nonlocal damping reduces plasmon-enhanced fluorescence in ultranarrow gaps

    Get PDF
    The nonclassical modification of plasmon-assisted fluorescence enhancement is theoretically explored by placing two-level dipole emitters at the narrow gaps encountered in canonical plasmonic architectures, namely dimers and trimers of different metallic nanoparticles. Through detailed simulations, in comparison with appropriate analytical modelling, it is shown that within classical electrodynamics, and for the reduced separations explored here, fluorescence enhancement factors of the order of 10510^{5} can be achieved, with a divergent behaviour as the particle touching regime is approached. This remarkable prediction is mainly governed by the dramatic increase in excitation rate triggered by the corresponding field enhancement inside the gaps. Nevertheless, once nonclassical corrections are included, the amplification factors decrease by up to two orders of magnitude and a saturation regime for narrower gaps is reached. These nonclassical limitations are demonstrated by simulations based on the generalised nonlocal optical response theory, which accounts in an efficient way not only for nonlocal screening, but also for the enhanced Landau damping near the metal surface. A simple strategy to introduce nonlocal corrections to the analytic solutions is also proposed. It is therefore shown that the nonlocal optical response of the metal imposes more realistic, finite upper bounds to the enhancement feasible with ultrasmall plasmonic cavities, thus providing a theoretical description closer to state of the art experiments

    Enhanced ponderomotive force in graphene due to interband resonance

    Get PDF
    We analyze intrinsic nonlinearities in two-dimensional polaritonic materials interacting with an optical wave. Focusing on the case of graphene, we show that the second-order nonlinear optical conductivity due to carrier density fluctuations associated with the excitation of a plasmon polariton is closely related to the ponderomotive force due to the oscillating optical field. This relation is first established through an elegant thermodynamic approach for a Drude-like plasma, in the frequency range where intraband scattering is the dominant contribution to conductivity. Subsequently, we extend our analysis to the interband regime, and show that for energies approximately half the Fermi energy, the intraband contribution to the ponderomotive force diverges. In practice, thermal broadening regularizes this divergence as one would expect, but even at room temperature typically leaves a strong ponderomotive enhancement. Finally, we study the impact of nonlocal corrections and find that nonlocality does not lead to further broadening (as one would expect in the case of Landau damping), but rather to a splitting of the ponderomotive interband resonance. Our analysis should prove useful to the open quest for exploiting nonlinearities in graphene and other two-dimensional polaritonic materials, through effects such as second harmonic generation and photon drag.Comment: 7 pages, 2 figures, 1 appendi

    Robustness of the Rabi splitting under nonlocal corrections in plexcitonics

    Get PDF
    We explore theoretically how nonlocal corrections in the description of the metal affect the strong coupling between excitons and plasmons in typical examples where nonlocal effects are anticipated to be strong, namely small metallic nanoparticles, thin metallic nanoshells or dimers with narrow separations, either coated with or encapsulating an excitonic layer. Through detailed simulations based on the generalised nonlocal optical response theory, which simultaneously accounts both for modal shifts due to screening and for surface-enhanced Landau damping, we show that, contrary to expectations, the influence of nonlocality is rather limited, as in most occasions the width of the Rabi splitting remains largely unaffected and the two hybrid modes are well distinguishable. We discuss how this behaviour can be understood in view of the popular coupled-harmonic-oscillator model, while we also provide analytic solutions based on Mie theory to describe the hybrid modes in the case of matryoshka-like single nanoparticles. Our analysis provides an answer to a so far open question, that of the influence of nonlocality on strong coupling, and is expected to facilitate the design and study of plexcitonic architectures with ultrafine geometrical details

    Air-core photonic band-gap fibers: the impact of surface modes

    Full text link
    We study the dispersion and leakage properties for the recently reported low-loss photonic band-gap fiber by Smith et al. [Nature 424, 657 (2003)]. We find that surface modes have a significant impact on both the dispersion and leakage properties of the fundamental mode. Our dispersion results are in qualitative agreement with the dispersion profile reported recently by Ouzounov et al. [Science 301, 1702 (2003)] though our results suggest that the observed long-wavelength anomalous dispersion is due to an avoided crossing (with surface modes) rather than band-bending caused by the photonic band-gap boundary of the cladding.Comment: 7 pages including 4 figures. Accepted for Optics Expres

    Projected-Dipole Model for Quantum Plasmonics

    Get PDF
    Quantum effects of plasmonic phenomena have been explored through ab-initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer is mapped from the free-electron distribution near the metal surface as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects of nonlocal response and a finite work function with TDDFT-level accuracy. Applying the theory to dimers we find quantum-corrections to the hybridization even in mesoscopic dimers as long as the gap is sub-nanometric itself.Comment: Supplemental Material is available upon request to author

    Localized plasmons in bilayer graphene nanodisks

    Get PDF
    We study localized plasmonic excitations in bilayer graphene (BLG) nanodisks, comparing AA-stacked and AB-stacked BLG and contrasting the results to the case of two monolayers without electronic hybridization. The electrodynamic response of the BLG electron gas is described in terms of a spatially homogeneous surface conductivity, and an efficient alternative two-dimensional electrostatic approach is employed to carry out all the numerical calculations of plasmon resonances. Due to a unique electronic band structures, the resonance frequency of the traditional dipolar plasmonic mode in the AA-stacked BLG nanodisk is roughly doping independent in the low-doping regime, while the mode is highly damped as the Fermi level approaches the interlayer hopping energy Îł\gamma associated with tunneling of electrons between the two layers. In addition to the traditional dipolar mode, we find that the AB-stacked BLG nanodisk also hosts a new plasmonic mode with energy larger than Îł\gamma. This mode can be tuned by either the doping level or structural size, and furthermore, this mode can dominate the plasmonic response for realistic structural conditions

    Size-dependent nonlocal effects in plasmonic semiconductor particles

    Get PDF
    Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic InSb and nn-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150 nm150\mathrm{\,nm} InSb particle at 300 K300\mathrm{\,K}, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects.Comment: 7 pages, 3 figures, 1 table, corrected typos in text and figure
    • …
    corecore